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Quasi-2D Unsteady Flow Procedure for Real Fluids  
(Preprint) 

Roger L. Davis *

University of California Davis, Davis, CA, 95616 

and 

Bryan T. Campbell †

GenCorp-Aerojet, Sacramento, CA, 95813-6000  

Details of the numerical solution techniques, including explicit, point-implicit, and fully 
implicit schemes, used in a new quasi two-dimensional procedure for the transient solution 
of real fluids in system lines and volumes are presented.  The procedure is coupled with a 
real-fluid properties database so that both compressible and incompressible fluids may be 
considered using the same code.  The procedure has been implemented in Matlab/Simulink® 
as well as Fortran95 to allow for application on a wide variety of computer platforms.  The 
computational efficiency of the various numerical methods is discussed to aid in selection for 
specific applications.  Results for the transient flows of gaseous nitrogen and water in a pipe 
are presented to demonstrate the capability of the current techniques and the unsteady flow 
physics that can occur in system lines. 

Nomenclature 
A = cross-sectional area 
Ap = wetted area 
ar = relative acceleration between inertial and absolute frames of reference 
CFL = Courant-Friedrichs-Lewi number 
c = speed of sound 
E = total energy = ρ (e + u2/2) 
e = internal energy 
F = flux of mass, momentum, and energy 
H = static enthalpy 
i = cell index 
k = temporal order of accuracy for ODE15s solution methodology 
m, n = index variables 
p = static pressure 
q&  = heat flux input 
S = source vector 
t = time 
U = state vector 
u = absolute velocity 
ur = relative velocity 
V = fluid volume = 1/ρ 
x = distance along solution domain 
ρ = fluid density 

 

                                                          
τw = shear force (friction) 

 
* Professor, Mechanical and Aeronautical Engineering, AIAA Associate Fellow. 
† Engineering Specialist, Systems Engineering, P.O. Box 13222, Dept. 5271, AIAA Member. 
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I. Introduction 
HE simulation of unsteady flows of non-idealized fluids in system lines and volumes is of interest for a wide 
variety of applications and industries, including air-conditioning systems, water/steam/oil piping networks, 

refinery systems, gas-turbine secondary flow-path and cooling networks, and liquid rocket engine propellant lines.  
Several approaches for simulating the dynamic behavior of such fluid-transmission lines have been reported.  The 
lumped-analysis approach treats a flow passage as a series of fluid control volumes that conserve mass and energy 
linked by flow resistance elements that compute the flow between the volumes1.  While this approach does conserve 
momentum in a quasi-steady sense at the flow resistances, the unsteady momentum term in the governing equations 
is neglected.  Although so-called “continuity” waves can be captured using this approach, neglecting these terms 
leads to an inability to capture true “dynamic” waves required for simulating such phenomenon as water-hammer 
and pressure surge2.  Another approach utilizes the Method of Characteristics3, which is a general method for 
solving particular types of differential equations.  The governing equations for fluid flow are compatible with this 
method and it has been used for simulation of fluid transmission lines4.  While the unsteady momentum terms are 
retained using this method, other problems, particularly at the boundaries of components, make it difficult to apply 
to a modular system-level simulation tool.  Modal methods have also been used when solution in the frequency 
domain is possible5.  This technique represents the pressure and velocity distributions in the flow domain as a sum 
of an infinite series of mode shapes, similar to a Fourier series solution.  While this method does present an elegant 
and efficient method for simulating idealized flows (e.g. incompressible, inviscid, laminar, etc), the addition of 
turbulent flow, real-fluid properties, heat transfer and phase change complicate the application of the method and 
reduce its attractiveness. 

T 

Since unsteady phenomena such as wave dynamics play an important role in the operation and testing of 
systems that contain fluid lines, a method that captures these transient effects is required.  The development of a 
quasi two-dimensional, unsteady, two-phase flow solver with heat transfer and real-fluid properties using standard 
finite-difference/control-volume solution methods has been the subject of the present effort.  Such a solver is geared 
towards modeling the dynamic behavior of fluid-filled lines and passages (i.e. the solution domain is much larger in 
one spatial dimension than in the others) accounting for the effects of changing cross-sectional area.  In addition, the 
solver must be suitable for use as a module in larger system-level transient simulations of hydraulic and pneumatic 
systems, so the solution method must be computationally efficient.  The following sections describe the modeling 
approach, numerical methodologies and test cases that have been utilized during the development of this model.  
Results are then shown for transient pipe flow of both nitrogen and water as a demonstration of the numerical 
capability and fluid physics that can be captured with the current procedure. 

II. Approach 
The model developed here represents fluid lines and flow passages where the length of the domain is much 

larger than the hydraulic diameter of the domain as a quasi two-dimensional domain.  For these types of 
components, flow separations and non-axial velocities are minimal, hence the quasi-2D assumption is valid.  The 
solver is targeted to the commercial Simulink® dynamic simulation software package from the MathWorks for 
integration into a larger suite of modules developed for simulating various systems.  Simulink® was selected since it 
offers a wide range of capabilities, over a dozen robust differential equation solvers, extensive documentation and 
technical support, a modern graphically-based modeling paradigm, an existing user community across many 
disciplines, and commercially-funded code development and maintenance.  A Fortran95 code using more traditional 
solution methods is also being developed in parallel to provide test cases for the Simulink® module. 

The solver is being developed to account for varying flow area, friction, losses due to bends, real-fluid and two-
phase flow effects, gravity and acceleration, heat transfer, and the capability to produce unsteady and steady-state 
solutions.  Fluid properties are obtained from the REFPROP fluid property database6 available from the National 
Institute for Standards and Testing (NIST).  This database utilizes state-of-the-art Equation of State models to fully 
describe “real fluid” properties over a wide range of thermodynamic conditions, including liquid, vapor, mixed 
phase and supercritical fluid regimes.  Properties that completely define the fluid thermodynamic state, as well as 
transport properties, are available as a function of any two thermodynamic parameters.  Validated fluid models for 
over 80 pure fluids and over 180 fluid mixtures are available in the database.  The database is accessed through a 
suite of Fortran77 subroutines that were compiled into the codes and obtain fluid equation of state model parameters 
from external files provided with the database. 

Friction and heat transfer are modeled as source terms in the governing equations.  This approach allows the 
flow to be modeled as one-dimensional and facilitates the computational efficiency.  Friction (i.e. viscous losses and 
losses due to bends and fittings) and heat transfer coefficients are obtained from suitable correlations between the 
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flow variables and the source terms.  The methodology for modeling two-phase flow will be included in the final 
paper. 

III. Governing Equations 
The governing equations consist of the quasi two-dimensional Euler equations with source terms for viscous 

effects and general acceleration in a non-inertial frame.  
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where ρ is the density, u is the absolute velocity in the inertial frame, ur is the relative velocity in the non-inertial 
frame, ar is the gravitational and relative acceleration in the non-inertial frame, E is the total energy, p is the 
pressure, H is the stagnation enthalpy, V is the local cell volume, A is the local line cross-sectional area, dx is the cell 
line length, Ap is the perimeter area, τw is the wall shear stress.  The wall shear stress can be written in terms of a 
friction factor, f, which is a function of the local Reynolds number and the wall surface roughness.   For the viscous 
flow examples presented below, the Churchill correlation7 was used to determine single-phase friction factors using 
the equation: 
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where Re is the local Reynolds number based on diameter. 
Closure between the pressure, density, and energy is performed with an equation of state for real fluids by using 

the NIST REFPROP suite of thermodynamic routines.  This allows for the solution of compressible, incompressible, 
and two-phase flows. 

IV. Numerical Methods 
 Equations (1) and (2) may be solved with a variety of numerical schemes that are second-order accurate in 

space and time for “steady” or transient flow.  These schemes currently include implicit, point-implicit, and explicit 
time-marching procedures.  Multiple-grid convergence acceleration may be used in steady-flow schemes as well as 
in the inner iteration of time-accurate point-implicit schemes to dramatically reduce the number of steady or inner 
iterations.  Multiple numerical schemes have been developed in the current procedure to provide flexibility and 
robustness when solving different flow conditions. 

A. Implicit 
The fully implicit discretization of Eqs. (1) and (2) may be achieved by representing the primary variables 

contained in U at the new time step rather than at the current time step.  This results in an N system of equations 
where N is the number of nodes in the line to be solved.  The coefficients of the matrix which multiplies the primary 
variable column matrix can be written as a tri-diagonal system (for second order spatial accuracy).  Solution of the 
system of equations can then be determined by finding the inverse of the coefficients matrix. 

An alternative to solving the system fully coupled in terms of a block-tridiagonal system, Eqs. (1) and (2) may be 
solved iteratively in a sequential manner.  The Matlab/Simulink solution procedure8, ODE15s, treats the discretized 
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form of Eqs. (1) and (2) as a sequential set of ordinary differential equations and solves them iteratively with a 
Newton iteration according to the update formula: 
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where k is the temporal order of accuracy.  In the current investigation, both the temporal and spatial accuracy is 
second order.   The time-step size is determined by the Courant-Friedrichs-Lewi condition i.e. 
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where CFL is the stability number and c is the local speed of sound.  The CFL stability number for the implicit 
technique can be very large.  Typical values are 100-10,000. 

B. Explicit 
The explicit time-marching of Eqs. (1) and (2) may also be performed using a Lax-Wendroff scheme, as 

described by Ni9.  In this procedure, time-marching the primary variables, U, corresponds to an update in time at 
each node according to a second order temporally accurate Taylor series formula: 
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The Ni scheme is a finite volume integration method.  The scheme is applied in a three step process. First the change 
is at the center of each computational cell is approximated as  
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The correction to the points i and i+1 are determined using the distribution formulas given below: 
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The primary variables are then updated by  
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 The first order changes in time, ∂U, are found directly from application of Eqs. (1) and (2) on the primary 
computational cells.  The second order changes in time, ∂2U, represented by the second-order derivatives of U 
above, are found by applying the time-derivative of Eqs. (1) and (2) on computational cells that are translated ½ cell 
line length from the primary computational cells.  The CFL stability number that sets the time-step size is set to 0.7 
due to the explicit nature of this scheme.   
 For steady flows or the inner iteration of the point-implicit technique described below, a multiple-grid 
acceleration procedure described by Ni is used to greatly reduce the number of time-steps to reach convergence.  
This allows the scheme to be competitive with the implicit procedure described above. 

C. Point Implicit 
A point-implicit procedure can be made up from either the implicit or explicit schemes described above.  For this 

procedure, the time-rate changes in Eqs. (4) or (6) are assumed to be in pseudo-time.  A true time derivative of the 
primary variables is added to the right-hand side of Eq. (1).  This true time derivative is derived from stored 
solutions of the primary variables at k+1 previous time-steps, where again, k is the temporal order of accuracy 
desired.  An inner-iteration is then used to drive the right-hand-side to zero.  The advantage of this approach is that 
steady-flow acceleration techniques may be used during the inner iteration such as a multiple-grid scheme.  Also, 
this technique provides flexibility in performing multiple lines of a network in parallel.  This procedure is known as 
the dual-time-step technique10 and has many similarities to the Newton iteration used in the implicit procedure. 

V. Results 
Transient pipe flow simulations of gaseous nitrogen and liquid water have been performed to demonstrate the 

capability of the present procedure.  A 0.254 m (10 in) pipe with a 0.0254 m (1 in) diameter was used for these 
simulations.  The surface roughness of the pipe, necessary for viscous flow simulations, was 2.54 x 10-6 m 
(0.0001 in).  The inlet total pressure was held at 3.45 kPa (50 psia) as well as the initial exit static pressure.  The 
inlet total temperature was held at 300°K (540°R).  Thus, the initial velocity of the flow in the pipe was zero.  At 
time 0.0001 seconds, the exit pressure was reduced to 3.31 kPa (48 psia).  This sudden reduction in pressure initiates 
a series of expansion and compression waves through the pipe and an increase in the velocity of the flow.  For 
inviscid-flow cases, the pressure decays in the pipe to a uniform value and the velocity grows asymptotically to a 
uniform value.  For viscous-flow cases, the pressure in the pipe decays but to a non-uniform distribution with the 
inlet pressure higher than the exit due to friction losses.  The velocity of the pipe flow, however, will once again 
grow asymptotically until it reaches a uniform value.  All simulations were run in time until both the pressure and 
velocity distributions through the pipe remained time-independent.  A total of 65 grid points with uniform spacing 
was used along the pipe in order to discretize the governing equations. 

A. Transient Nitrogen Pipe Flow 
The pipe flow simulation with nitrogen is meant to test the current procedure’s capabilities for compressible 

flow.  The explicit and point-implicit numerical procedures were both run in order to make comparisons and to 
demonstrate features of each technique.  Figure 1 shows the predicted pressure and velocity as a function of time 
using the explicit numerical technique for inviscid flow at five locations along the pipe.  In this scheme, the time 
step size is determined by the minimum time step of all the cells in the domain.  The sinusoidal variation of pressure 
with time is evidence of the expansion and compression waves propagating through the pipe.  The time-variation of 
the velocity corresponds to these waves.  The pressure decays in time until it reaches the exit pressure throughout 
the pipe.  The velocity increases until it reaches a value of approximately 31 m/s (102 ft/s). 
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                                 a) Pressure                                                                                       b) Velocity 

Figure 1 – Nitrogen Transient Inviscid Pipe Flow using Explicit Numerical Technique 
 

Figure 2 shows the predicted results using the point-implicit numerical procedure.  In this procedure, the time-
step size can be prescribed by the user to be any value that results in a desired solution time and resolution of 
temporal features in the flow.  For the present case, the time-step size was set at 0.01 seconds which was 
approximately 1,500 times larger than that required for in the explicit procedure.  The capability to use a large time-
step size in the point-implicit procedure allows for very fast solution time.  However, as shown in Figure 2, 
resolution of the high-frequency waves and their effect on the pressure and velocity is lost as a result of the 
increased time-step size. 
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Figure 2 – Nitrogen Transient Inviscid Pipe Flow using Point-Implicit Numerical Technique 

 
Both numerical schemes were run with viscous shear stress effects modeled with a friction factor correlation as 

described above as a further demonstration of the current procedure’s capability.  Figure 3 shows the predicted 
pressure and velocity resulting from the explicit transient viscous flow simulation of nitrogen.  The pressure decays 
to a non-uniform distribution through the pipe for viscous flow.  The pressure drop along the pipe agrees very well 
with what is expected from a lumped parameter analysis with the energy equation.  The velocity asymptotically 
increases with time to a level below that predicted without viscous effects (shown in Figure 1). 
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                                 a) Pressure                                                                                      b) Velocity 

Figure 3 – Nitrogen Transient Viscous Pipe Flow using Explicit Numerical Technique 
 

The nitrogen viscous flow results using the point-implicit numerical procedure are shown in Figure 4.  The 
transient solution is obtained with a time-step size 1,500 times greater than that for the explicit solution shown in 
Figure 3 but with the loss in temporal resolution of the pressure and velocity solution. 
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                                 a) Pressure                                                                                        b) Velocity 

Figure 4 – Nitrogen Transient Viscous Pipe Flow using Point-Implicit Numerical Technique 
 
Transient Water Pipe Flow 

A similar set of simulations were performed using the present procedure with water to demonstrate the capability 
to predict transient flows in incompressible fluids.  The main critical difference with incompressible fluids is that the 
speed of sound and wave speeds are much larger for incompressible fluids.  This makes the use of explicit numerical 
techniques time-consuming.   Resolution of the unsteady sinusoidal transients shown above are possible, but quite 
time consuming.  The effect of the high-frequency waves are not always of interest so that numerical techniques that 
can take large time-steps and reduce solution time are often attractable. 

Figure 5 shows the transient point-implicit inviscid solution of water through the previously described 
configuration.  Note that the time to reach equilibrium for water is much longer than that required for nitrogen due to 
the incompressibility of the fluid. 
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                               a) Pressure                                                                                       b) Velocity 

Figure 5 – Water Transient Inviscid Pipe Flow using Point-Implicit Numerical Technique 
 

The size of the time step used in the point-implicit solution was 0.01 seconds.  The time step size required in the 
corresponding explicit solution procedure was approximately 2x10-6 seconds or 5,000 times smaller than that used in 
the point-implicit solution.  As a result, over 600,000 time steps would be required to solve the 1.2 seconds of time 
to reach a time-independent solution. 

The transient viscous solution for water pipe flow using the point-implicit procedure is shown in Figure 6.  The 
viscous pressure solution converges to a non-uniform time-independent distribution that agrees very well with 
lumped parameter energy equation analysis.  The velocity converges to a uniform time-independent solution with a 
slightly lower velocity than the predicted inviscid time-independent solution.   
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                                      a) Pressure                                                                                  b) Velocity 

Figure 6 – Water Transient Viscous Pipe Flow using Point-Implicit Numerical Technique 
 

As for the inviscid case, the time step size required for the explicit solution is approximately 5,000 times smaller 
requiring an excessive solution time.  Both inviscid and viscous solutions have been run, however, to verify solution 
capability.  Comparison between the explicit and point-implicit solutions are similar to that for nitrogen with the 
explicit solutions showing very high frequency content due to the various expansion and compression waves 
propagating through the pipe. 

VI. Conclusion 
A new baseline procedure has been developed for the numerical solution of transient quasi two-dimensional flow 

in engine and system lines and volumes.  This new procedure is driven written in both Matlab/Simulink and 
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Fortran95.  A variety of numerical solution algorithms are included to allow for various needs depending on the 
desired solution time and frequency resolution.  Currently, explicit and point-implicit numerical techniques have 
been implemented and validated.  The point-implict technique is very useful for finding rapid turn-around of 
solutions at the expense of some loss in temporal resolution.  The explicit technique is very useful for predicting the 
high-frequency content of transient flow fields.  Implementation of a fully implicit numerical technique is underway 
and results will also be shown for this technique in the final paper. 
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